Clinical significance of serum microRNA-146a and inflammatory factors in children with Mycoplasma pneumoniae pneumonia after azithromycin treatment.
J Pediatr (Rio J)
; 100(1): 108-115, 2024.
Article
in En
| MEDLINE
| ID: mdl-37778397
OBJECTIVE: This study aimed to investigate the clinical significance of serum microRNA-146a and pro-inflammatory factors in children with Mycoplasma pneumoniae pneumonia after azithromycin treatment. microRNA-146a is known to regulate inflammatory responses, and excessive inflammation is a primary characteristic of MPP. METHODS: Children with MPP received conventional symptomatic therapy along with intravenous administration of azithromycin for one week. Serum levels of microRNA-146a and pro-inflammatory factors were measured using RT-qPCR and ELISA kits, respectively. The correlation between microRNA-146a and pro-inflammatory factors was analyzed by the Pearson method. Pulmonary function indexes were assessed using a pulmonary function analyzer, and their correlation with microRNA-146a and pro-inflammatory factors after treatment was evaluated. Children with MPP were divided into effective and ineffective treatment groups, and the clinical significance of microRNA-146a and pro-inflammatory factors was evaluated using receiver operating characteristic curves and logistic multivariate regression analysis. RESULTS: Serum microRNA-146a was downregulated in children with MPP but upregulated after azithromycin treatment, contrasting with the trend observed for pro-inflammatory factors. MicroRNA-146a showed a negative correlation with pro-inflammatory cytokines. Pulmonary function parameters were initially reduced in children with MPP, but increased after treatment, showing positive/inverse associations with microRNA-146a and pro-inflammatory factors. Higher microRNA-146a and lower pro-inflammatory factors predicted better efficacy of azithromycin treatment. MicroRNA-146a, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and forced expiratory volume in the first second/forced vital capacity (FEV1/FVC) were identified as independent factors influencing treatment efficacy. CONCLUSION: Azithromycin treatment in children with MPP upregulates microRNA-146a, downregulates pro-inflammatory factors, and effectively improves pulmonary function.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Pneumonia, Mycoplasma
/
MicroRNAs
Type of study:
Prognostic_studies
Limits:
Child
/
Humans
Language:
En
Journal:
J Pediatr (Rio J)
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Brazil