Polarity-Specific and Pyrimidine-over-Purine Adaptive Triplex DNA Recognition by a Near-Infrared Fluorogenic Molecular Rotor.
Anal Chem
; 95(41): 15367-15374, 2023 10 17.
Article
in En
| MEDLINE
| ID: mdl-37784221
Triplex DNA structures have displayed a wide range of applications including nanosensing, molecule switching, and drug delivering. Therefore, it is of great importance to effectively recognize triplex DNA structures by a simple and highly selective manner. Herein, we found that a near-infrared fluorogenic probe of NIAD-4 with a molecular rotor (MR) merit can selectively recognize triplex DNA structures over G-quadruplex, i-motif, and duplex structures (Tri-over-QID selectivity), which is competent over the widely used MR probe of thioflavin T (ThT). Furthermore, NIAD-4 exhibits as well a high selectivity toward the 'pyrimidine-type' triplex structures (Y:R-Y type) with respect to the 'purine-type' triplex structures (R:R-Y type) (a Y-over-R selectivity). Interestingly, NIAD-4 recognizes the Y:R-Y triplex structures by a polarity-dependent manner. The 3' end triplet is the preferential binding field of NIAD-4 with respect to the 5' end one (a 3'-over-5' selectivity) as the 3' end triplet is more stable than the 5' end one in the Hoogsteen hydrogen bond. It is expected that the adaptive stacking interaction between NIAD-4 and the 3' end triplet favors the Tri-over-QID, Y-over-R, and 3'-over-5' selectivities since this MR probe has three rotating shafts matching well with the triplet in topology. Such a high selectivity of NIAD-4 opens a new route in designing sensors with DNA structures switching between triplex, i-motif, and G-quadruplex structures.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Purines
/
DNA
Language:
En
Journal:
Anal Chem
Year:
2023
Document type:
Article
Country of publication:
United States