Your browser doesn't support javascript.
loading
Biotin-decorated hollow gold nanoshells for dual-modal imaging-guided NIR-II photothermal and radiosensitizing therapy toward breast cancer.
Chen, Yongjian; Meng, Wei; Chen, Ming; Zhang, Lianying; Chen, Mingwa; Chen, Xiaotong; Peng, Jian; Huang, Naihan; Zhang, Wenhua; Chen, Jinxiang.
Affiliation
  • Chen Y; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Meng W; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Chen M; The People's Hospital of Gaozhou, Maoming 525200, China.
  • Zhang L; School of Pharmacy Sciences, Southwest Medical University, Luzhou 646000, China.
  • Chen M; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Chen X; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Peng J; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Huang N; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
  • Zhang W; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China. whzhang@suda.edu.cn.
  • Chen J; Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 5
J Mater Chem B ; 11(41): 10003-10018, 2023 10 25.
Article in En | MEDLINE | ID: mdl-37843459
Radiotherapy (RT) is dominantly used in breast cancer therapy but is facing fierce side effects because of the limited difference between tumor and normal tissues in response to ionizing radiation. Herein, we construct a core-shell nanoparticle of UiO-66-NH2@AuNS. Then the solid gold shell was etched into hollow AuNS (HAuNS) and further modified with biotin-PEG-SH (PEG-bio) to obtain HAuNS@PEG-bio. HAuNS@PEG-bio demonstrates effective near infrared II (NIR-II) region photothermal therapy (PTT) performance, and the increase of temperature at the tumor site promotes the blood circulation to alleviate the hypoxia in the tumor microenvironment (TME). Meanwhile, HAuNS exhibits strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (Z = 79) and hollowed-out structure. Through the dual radiosensitization of the high atomic coefficient of Au and the hypoxia alleviation from PTT of HAuNS, the breast cancer cells could undergo immunogenic cell death (ICD) to activate the immune response. At the in vivo level, HAuNS@PEG-bio performs NIR-II photothermal, radiosensitization, and ICD therapies through cellular targeting, guided by infrared heat and CT imaging. This work highlights that the constructed biotin-decorated hollow gold nanoshell has a promising potential as a diagnostic and treatment integration reagents for the breast cancer.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Nanoshells Limits: Female / Humans Language: En Journal: J Mater Chem B Year: 2023 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Nanoshells Limits: Female / Humans Language: En Journal: J Mater Chem B Year: 2023 Document type: Article Country of publication: United kingdom