Your browser doesn't support javascript.
loading
Hydrolysis and condensation of monobutyltin chloride: reaction process analysis with DFT.
Zhu, Jingwei; Mo, Jianliang; Shi, Guohua; Liu, Qiying; Xu, Gang; Han, Gaorong; Liu, Yong.
Affiliation
  • Zhu J; School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China liuyong.mse@zju.edu.cn +86 571 87951842 +86 571 87951842.
  • Mo J; School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China liuyong.mse@zju.edu.cn +86 571 87951842 +86 571 87951842.
  • Shi G; Weihai CNG New Materials Technolgy R&D Co. Ltd. Weihai China 264299.
  • Liu Q; Weihai CNG New Materials Technolgy R&D Co. Ltd. Weihai China 264299.
  • Xu G; School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China liuyong.mse@zju.edu.cn +86 571 87951842 +86 571 87951842.
  • Han G; School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China liuyong.mse@zju.edu.cn +86 571 87951842 +86 571 87951842.
  • Liu Y; School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China liuyong.mse@zju.edu.cn +86 571 87951842 +86 571 87951842.
RSC Adv ; 13(44): 30718-30725, 2023 Oct 18.
Article in En | MEDLINE | ID: mdl-37869394
ABSTRACT
As the initial process of preparing transparent conductive oxide materials from monobutyltin chloride (MBTC) to tin oxide, the hydrolysis and condensation of MBTC to form a dimer Sn2 play a critical role. However, the specific mechanism of this process is still unclear. Here we develop a step-by-step searching method based on density functional theory calculation and empirical chemical criteria to determine possible reaction pathways and reveal the most likely reaction mechanism. The wave function analyses of various intermediate species provide more insights into the changes of atomic charge population, chemical bond strength, and coordination situation of central tin in the reaction process. Further investigation on the ring-containing Sn2 reveals the existence of unique three-center four-electron (3c-4e) interactions to stabilize the four-membered Sn2O2 ring structure, which serves as the true driving force for dimerization reaction. These results provide a more detailed understanding of the hydrolysis and condensation process of MBTC and would be helpful for the future optimization of the preparation process of tin oxide films.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: RSC Adv Year: 2023 Document type: Article Country of publication: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: RSC Adv Year: 2023 Document type: Article Country of publication: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM