Your browser doesn't support javascript.
loading
Sunlight-driven CO2utilization over two-dimensional Co-based nanosheets.
Gao, Linjie; Wang, Haixiao; Wang, Yachuan; Liu, Bang; Zhang, Weifeng; Li, Yaguang.
Affiliation
  • Gao L; Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People
  • Wang H; Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People
  • Wang Y; Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People
  • Liu B; Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People
  • Zhang W; Intelligent Sensor Network Engineering Research Center of Hebei Province, Faculty of Information Engineering, Hebei GEO University, Shijiazhuang, 050031, People's Republic of China.
  • Li Y; Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People
Nanotechnology ; 35(5)2023 Nov 16.
Article in En | MEDLINE | ID: mdl-37879324
ABSTRACT
Reverse water gas shift (RWGS) reaction is an intriguing strategy to realize carbon neutrality, however, the endothermic process usually needs high temperature that supplied by non-renewable fossil fuels, resulting in secondary energy and environmental issues. Photothermal catalysis are ideal substitutes for the conventional thermal catalysis, providing that high reaction efficiency is achievable. Two-dimensional (2D) materials are highly active as RWGS catalysts, however, their industrial application is restricted by the preparation cost. In this study, a series of 2D Co-based catalysts for photothermal RWGS reaction with tunable selectivity were prepared by self-assembly method based on cheap amylum, by integrating the 2D catalysts with our homemade photothermal device, sunlight driven efficient RWGS reaction was realized. The prepared 2D Co0.5Ce0.5Oxexhibited a full selectivity toward CO (100%) and could be heated to 318 °C under 1 kW m-2irradiation with the CO generation rate of 14.48 mmol g-1h-1, pointing out a cheap and universal method to prepare 2D materials, and zero consumption CO generation from photothermal RWGS reaction.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanotechnology Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanotechnology Year: 2023 Document type: Article