Your browser doesn't support javascript.
loading
Growth and DNA Methylation Alteration in Rice (Oryza sativa L.) in Response to Ozone Stress.
Wang, Hongyan; Wang, Long; Yang, Mengke; Zhang, Ning; Li, Jiazhen; Wang, Yuqian; Wang, Yue; Wang, Xuewen; Ruan, Yanan; Xu, Sheng.
Affiliation
  • Wang H; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Wang L; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Yang M; Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China.
  • Zhang N; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Li J; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Wang Y; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Wang Y; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Wang X; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
  • Ruan Y; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
  • Xu S; Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang 110036, China.
Genes (Basel) ; 14(10)2023 09 28.
Article in En | MEDLINE | ID: mdl-37895237
With the development of urban industrialization, the increasing ozone concentration (O3) at ground level stresses on the survival of plants. Plants have to adapt to ozone stress. DNA methylation is crucial for a rapid response to abiotic stress in plants. Little information is known regarding the epigenetic response of DNA methylation of plants to O3 stress. This study is designed to explore the epigenetic mechanism and identify a possible core modification of DNA methylation or genes in the plant, in response to O3 stress. We investigated the agronomic traits and genome-wide DNA methylation variations of the Japonica rice cultivar Nipponbare in response to O3 stress at three high concentrations (80, 160, and 200 nmol·mol-1), simulated using open-top chambers (OTC). The flag leaf length, panicle length, and hundred-grain weight of rice showed beneficial effects at 80 nmol·mol-1 O3 and an inhibitory effect at both 160 and 200 nmol·mol-1 O3. The methylation-sensitive amplified polymorphism results showed that the O3-induced genome-wide methylation alterations account for 14.72-15.18% at three different concentrations. Our results demonstrated that methylation and demethylation alteration sites were activated throughout the O3 stress, mainly at CNG sites. By recovering and sequencing bands with methylation alteration, ten stress-related differentially amplified sequences, widely present on different chromosomes, were obtained. Our findings show that DNA methylation may be an active and rapid epigenetic response to ozone stress. These results can provide us with a theoretical basis and a reference to look for more hereditary information about the molecular mechanism of plant resistance to O3 pollution.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ozone / Oryza Language: En Journal: Genes (Basel) Year: 2023 Document type: Article Affiliation country: China Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ozone / Oryza Language: En Journal: Genes (Basel) Year: 2023 Document type: Article Affiliation country: China Country of publication: Switzerland