Your browser doesn't support javascript.
loading
Disentangling the evolution of electrons and holes in photoexcited ZnO nanoparticles.
Milne, Christopher J; Nagornova, Natalia; Pope, Thomas; Chen, Hui-Yuan; Rossi, Thomas; Szlachetko, Jakub; Gawelda, Wojciech; Britz, Alexander; van Driel, Tim B; Sala, Leonardo; Ebner, Simon; Katayama, Tetsuo; Southworth, Stephen H; Doumy, Gilles; March, Anne Marie; Lehmann, C Stefan; Mucke, Melanie; Iablonskyi, Denys; Kumagai, Yoshiaki; Knopp, Gregor; Motomura, Koji; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Nielsen, Martin M; Pajek, Marek; Ueda, Kiyoshi; Abela, Rafael; Penfold, Thomas J; Chergui, Majed.
Affiliation
  • Nagornova N; Lausanne Centre for Ultrafast Science (LACUS), ISIC, FSB, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Pope T; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
  • Chen HY; Lausanne Centre for Ultrafast Science (LACUS), ISIC, FSB, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Rossi T; Lausanne Centre for Ultrafast Science (LACUS), ISIC, FSB, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • van Driel TB; Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
  • Sala L; SwissFEL, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland.
  • Ebner S; SwissFEL, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland.
  • Southworth SH; Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
  • Doumy G; Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
  • March AM; Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
  • Mucke M; Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden.
  • Iablonskyi D; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
  • Kumagai Y; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
  • Knopp G; SwissFEL, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland.
  • Motomura K; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
  • Togashi T; Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
  • Owada S; RIKEN, SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan.
  • Yabashi M; RIKEN, SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan.
  • Nielsen MM; Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
  • Pajek M; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland.
  • Abela R; SwissFEL, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland.
  • Penfold TJ; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
  • Chergui M; Lausanne Centre for Ultrafast Science (LACUS), ISIC, FSB, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Struct Dyn ; 10(6): 064501, 2023 Nov.
Article in En | MEDLINE | ID: mdl-37941994
ABSTRACT
The evolution of charge carriers in photoexcited room temperature ZnO nanoparticles in solution is investigated using ultrafast ultraviolet photoluminescence spectroscopy, ultrafast Zn K-edge absorption spectroscopy, and ab initio molecular dynamics (MD) simulations. The photoluminescence is excited at 4.66 eV, well above the band edge, and shows that electron cooling in the conduction band and exciton formation occur in <500 fs, in excellent agreement with theoretical predictions. The x-ray absorption measurements, obtained upon excitation close to the band edge at 3.49 eV, are sensitive to the migration and trapping of holes. They reveal that the 2 ps transient largely reproduces the previously reported transient obtained at 100 ps time delay in synchrotron studies. In addition, the x-ray absorption signal is found to rise in ∼1.4 ps, which we attribute to the diffusion of holes through the lattice prior to their trapping at singly charged oxygen vacancies. Indeed, the MD simulations show that impulsive trapping of holes induces an ultrafast expansion of the cage of Zn atoms in <200 fs, followed by an oscillatory response at a frequency of ∼100 cm-1, which corresponds to a phonon mode of the system involving the Zn sub-lattice.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Struct Dyn Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Struct Dyn Year: 2023 Document type: Article