Your browser doesn't support javascript.
loading
"Floating Catalytic Foam" with prominent heat-induced convection for the effective photocatalytic removal of antibiotics.
Zhang, Zhe; Zhang, Lu; Huang, Zhihao; Xu, Yuxin; Zhao, Qingqing; Wang, Hongju; Shi, Meiqing; Li, Xiangnan; Jiang, Kai; Wu, Dapeng.
Affiliation
  • Zhang Z; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Zhang L; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China. Electronic address
  • Huang Z; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Xu Y; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Zhao Q; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Wang H; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Shi M; School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China. Electronic address: shimeiqing0925@126.com.
  • Li X; School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Jiang K; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
  • Wu D; School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China; School of Chemistr
J Hazard Mater ; 463: 132879, 2024 02 05.
Article in En | MEDLINE | ID: mdl-37944238
ABSTRACT
Immobilized photocatalysts represent a promising candidate for the wastewater treatments due to their good reusability, high stability and low eco-risk. Mass transfer within the immobilized catalytic bed is a crucial process that determines the contacting, adsorption, and degradation kinetics in the photodegradation. In this study, a floating catalytic foam (FCF) with a prominent pumping effect was designed to promote mass transfer. The polyurethane foam immobilized with rGO/TiO2/ultrathin-g-C3N4 photocatalyst (PRTCN) was prepared by a simple dip-coating and Uv-light aging process. It was found that the hydrophilic-hydrophobic interfaces could not only contribute to the floating of the catalyst but also establish a temperature gradient across the floating immobilized catalyst. In addition, the temperature gradient induced convection could serve as a built-in pump to effectively promote the diffusion and adsorption of target antibiotic molecules during the photocatalytic process. Therefore, the PRTCN demonstrated a high photodegradation and mineralization efficiency with excellent reusability and anti-interference capability. Moreover, the photodegradation mechanism and the intermediates' toxicity of norfloxacin were detailly investigated by ultra-high resolution electrospray time-of-flight mass spectrometry, density functional theory simulation and ECOSAR estimation. This work proposed a facile and sustainable strategy to enhance the mass transfer problem on immobilized photocatalysts, which could promote the application of the immobilized photocatalysts in the real water-treatment scenarios.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Light / Anti-Bacterial Agents Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Light / Anti-Bacterial Agents Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: China
...