Using Proteomics Data to Identify Personalized Treatments in Multiple Myeloma: A Machine Learning Approach.
Int J Mol Sci
; 24(21)2023 Oct 25.
Article
in En
| MEDLINE
| ID: mdl-37958554
This paper describes a machine learning (ML) decision support system to provide a list of chemotherapeutics that individual multiple myeloma (MM) patients are sensitive/resistant to, based on their proteomic profile. The methodology used in this study involved understanding the parameter space and selecting the dominant features (proteomics data), identifying patterns of proteomic profiles and their association to the recommended treatments, and defining the decision support system of personalized treatment as a classification problem. During the data analysis, we compared several ML algorithms, such as linear regression, Random Forest, and support vector machines, to classify patients as sensitive/resistant to therapeutics. A further analysis examined data-balancing techniques that emerged due to the small cohort size. The results suggest that utilizing proteomics data is a promising approach for identifying effective treatment options for patients with MM (reaching on average an accuracy of 81%). Although this pilot study was limited by the small patient cohort (39 patients), which restricted the training and validation of the explored ML solutions to identify complex associations between proteins, it holds great promise for developing personalized anti-MM treatments using ML approaches.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Proteomics
/
Multiple Myeloma
Limits:
Humans
Language:
En
Journal:
Int J Mol Sci
Year:
2023
Document type:
Article
Affiliation country:
Ireland
Country of publication:
Switzerland