Your browser doesn't support javascript.
loading
A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence microscopy image restoration.
Wang, Qinghua; Li, Ziwei; Zhang, Shuqi; Chi, Nan; Dai, Qionghai.
Affiliation
  • Wang Q; School of Information Science and Technology, Fudan University, Shanghai, 200433, China. Electronic address: 21110720122@fudan.m.edu.cn.
  • Li Z; School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Shanghai ERC of LEO Satellite Communication and Applications, Shanghai CIC of LEO Satellite Communication Technology, Fudan University, Shanghai, 200433, China; Pujiang Laboratory, Shanghai, China. Electronic ad
  • Zhang S; School of Information Science and Technology, Fudan University, Shanghai, 200433, China. Electronic address: 22210720080@m.fudan.edu.cn.
  • Chi N; School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Shanghai ERC of LEO Satellite Communication and Applications, Shanghai CIC of LEO Satellite Communication Technology, Fudan University, Shanghai, 200433, China; Shanghai Collaborative Innovation Center of Low-Ea
  • Dai Q; School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Department of Automation, Tsinghua University, Beijing, 100084, China. Electronic address: daiqh@tsinghua.edu.cn.
Neural Netw ; 170: 227-241, 2024 Feb.
Article in En | MEDLINE | ID: mdl-37992510
Fluorescence microscopes are indispensable tools for the life science research community. Nevertheless, the presence of optical component limitations, coupled with the maximum photon budget that the specimen can tolerate, inevitably leads to a decline in imaging quality and a lack of useful signals. Therefore, image restoration becomes essential for ensuring high-quality and accurate analyses. This paper presents the Wavelet-Enhanced Convolutional-Transformer (WECT), a novel deep learning technique developed specifically for the purpose of reducing noise in microscopy images and attaining super-resolution. Unlike traditional approaches, WECT integrates wavelet transform and inverse-transform for multi-resolution image decomposition and reconstruction, resulting in an expanded receptive field for the network without compromising information integrity. Subsequently, multiple consecutive parallel CNN-Transformer modules are utilized to collaboratively model local and global dependencies, thus facilitating the extraction of more comprehensive and diversified deep features. In addition, the incorporation of generative adversarial networks (GANs) into WECT enhances its capacity to generate high perceptual quality microscopic images. Extensive experiments have demonstrated that the WECT framework outperforms current state-of-the-art restoration methods on real fluorescence microscopy data under various imaging modalities and conditions, in terms of quantitative and qualitative analysis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photons / Wavelet Analysis Language: En Journal: Neural Netw Journal subject: NEUROLOGIA Year: 2024 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photons / Wavelet Analysis Language: En Journal: Neural Netw Journal subject: NEUROLOGIA Year: 2024 Document type: Article Country of publication: United States