Your browser doesn't support javascript.
loading
10­Gingerol, a novel ginger compound, exhibits antiadipogenic effects without compromising cell viability in 3T3­L1 cells.
Preciado-Ortiz, María Elizabeth; Martinez-Lopez, Erika; Rodriguez-Echevarría, Roberto; Perez-Robles, Mariana; Gembe-Olivarez, Gildardo; Rivera-Valdés, Juan José.
Affiliation
  • Preciado-Ortiz ME; Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
  • Martinez-Lopez E; PhD Program in Translational Nutrition Sciences, Department of Human Reproduction and Child Growth and Development, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
  • Rodriguez-Echevarría R; Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
  • Perez-Robles M; Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
  • Gembe-Olivarez G; Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
  • Rivera-Valdés JJ; Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico.
Biomed Rep ; 19(6): 105, 2023 Dec.
Article in En | MEDLINE | ID: mdl-38025831
ABSTRACT
Obesity is defined as excessive fat accumulation that can be detrimental to health and currently affects a large part of the global population. Obesity arises from excessive energy intake along with a sedentary lifestyle and leads to adipocytes with aggravated hypertrophy. Strategies have been designed to prevent and treat obesity. Nutrigenomics may serve a role in prevention of obesity using bioactive compounds present in certain foods with anti-obesogenic effects. Ginger (Zingiber officinale Roscoe) contains gingerols, key bioactive compounds that inhibit hypertrophy and hyperplasia of adipocytes. The present study aimed to evaluate the antiadipogenic activity of 10-gingerol (10-G) in the 3T3-L1 cell line. Three study groups were formed Negative (3T3-L1 preadipocytes) and positive control (mature 3T3-L1 adipocytes) and 10-G (3T3-L1 preadipocytes stimulated with 10-G during adipogenic differentiation). Cell viability and lipid content were evaluated by MTT assay and Oil Red O staining, respectively. mRNA expression of CCAAT enhancer-binding protein α (C/ebpα), peroxisome proliferator-activated receptor γ (Pparγ), mechanistic target of rapamycin complex (Mtor), sterol regulatory element binding transcription factor 1 (Srebf1), acetyl-coenzyme A carboxylase (Acaca), fatty acid binding protein 4 (Fabp4), and 18S rRNA (Rn18s), was quantified by quantitative PCR. The protein expression of C/EPBα was analyzed by western blot. In the 10-G group, lipid content was decreased by 28.83% (P<0.0001) compared with the positive control; notably, cell viability was not affected (P=0.336). The mRNA expression in the 10-G group was higher for C/ebpα (P<0.001) and lower for Acaca (P<0.001), Fabp4 (P<0.001), Mtor (P<0.0001) and Srebf1 (P<0.0001) compared with the positive control group, while gene expression of Pparγ did not present significant changes. The presence of 10-G notably decreased C/EBPα protein levels in 3T3-L1 adipocytes. In summary, the antiadipogenic effect of 10-G during the differentiation of 3T3-L1 cells into adipocytes may be explained by mRNA downregulation of adipogenic transcriptional factors and lipid metabolism-associated genes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomed Rep Year: 2023 Document type: Article Affiliation country: Mexico

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomed Rep Year: 2023 Document type: Article Affiliation country: Mexico