Novel non-Joule heating technique: Externally laser-heated diamond anvil cell.
Rev Sci Instrum
; 94(4)2023 Apr 01.
Article
in En
| MEDLINE
| ID: mdl-38081254
The externally heated diamond anvil cell (EHDAC) conducts high pressure and temperature experiments with spatial uniformity and temporal stability. These are conventionally combined with various spectroscopies and x-ray diffraction measurements. EHDAC techniques perform Joule heating on a heater placed close to or directly in contact with diamond anvils. However, the electrical wiring and heater required for Joule heating complicate EHDAC setups, hindering easy access for the measurement of physical properties. This study proposes an EHDAC technique using laser- instead of Joule-heating. We successfully achieved temperatures reaching 900 K by applying heat to diamond anvils through laser-heating of the gaskets with thermally insulating anvil seats. To test this setup, we measured the melting temperature of H2O ice VII, which was consistent with previous studies. We also measured the high-pressure and temperature impedance of H2O VII and verified the capability of electrical resistivity measurements in this setup. This technique allows various physical property measurements owing to its simple setup required for externally laser-heated diamond anvil cell experiments. The unique characteristics of this heating technique are that (1) no heaters or wiring are required, (2) it exhibits the most efficient heating among EHDAC studies, (3) it maintains the DAC body at room temperature, and (4) diamond anvils do not detach from anvil seats after the EHDAC experiment. This method significantly simplifies the experimental setup, which allows much easier access to various physical property measurements using an EHDAC.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Rev Sci Instrum
Year:
2023
Document type:
Article
Affiliation country:
Japan
Country of publication:
United States