Your browser doesn't support javascript.
loading
Endophytic biofungicide Bacillus subtilis (NBRI-W9) reshapes the metabolic homeostasis disrupted by the chemical fungicide, propiconazole in tomato plants to provide sustainable immunity against non-target bacterial pathogens.
Yadav, Udit; Anand, Vandana; Kumar, Sanjeev; Srivastava, Suchi; Mishra, Shashank K; Chauhan, Puneet Singh; Singh, Poonam C.
Affiliation
  • Yadav U; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
  • Anand V; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
  • Kumar S; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
  • Srivastava S; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
  • Mishra SK; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
  • Chauhan PS; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
  • Singh PC; Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India. Electronic address: pc.singh@nbri.res.in.
Environ Pollut ; 343: 123144, 2024 Feb 15.
Article in En | MEDLINE | ID: mdl-38123116
ABSTRACT
Chemical and microbial fungicides (Bio/fungicide) act differentially on plant systems. The present work assessed the metabolic profile of tomato plants vis-a-vis endophytic diversity after spraying of Propiconazole (PCZ) and endophytic biofungicide Bacillus subtilis (W9). Bio/fungicides were sprayed on tomato plants and evaluated for phenotypic, biochemical, and metabolic profiles after one week. In W9 treatment, a significant increase in relative abundance of several metabolites was observed including sugars, sugar alcohols, fatty-acids, organic-acids, and amino-acids. Polysaccharides and fatty acids showed a significant positive correlation with Rhizobiales, Burkholderiales, Bacillales, and Lactobacillales, respectively (p < 0.05). The PCZ and W9 treated plant's metabolic status significantly affected their resistance to non-target, bacterial pathogen P. syringae. Compared to PCZ and control, W9 treatment reduced the ROS deposition and expression of antioxidants gene GPx, PO (~0.1-1.7fold). It enhanced the genes related to the Phenylpropanoid pathway (∼1.6-5.2 fold), PR protein (~1.2-3.4 fold), and JA biosynthesis (~1.7-4.3 fold), resulting in reduced disease incidence. The results provide novel insights into the effects of endophytic biofungicide and chemical fungicides on the plant's metabolic status, its relation to the endophytes, and role in altering the plant's immune system.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Triazoles / Solanum lycopersicum / Fungicides, Industrial Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: India Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Triazoles / Solanum lycopersicum / Fungicides, Industrial Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: India Country of publication: United kingdom