Your browser doesn't support javascript.
loading
Circular rotation of different structures on natural convection of nanofluid-mobilized circular cylinder cavity saturated with a heterogeneous porous medium.
Aly, Abdelraheem M; Raizah, Zehba; Chamkha, Ali J.
Affiliation
  • Aly AM; Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
  • Raizah Z; Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
  • Chamkha AJ; Faculty of Engineering, Kuwait College of Science and Technology, Doha District, Kuwait.
Heliyon ; 9(12): e22865, 2023 Dec.
Article in En | MEDLINE | ID: mdl-38125440
ABSTRACT
The incompressible smoothed particle hydrodynamics (ISPH) method is utilized for studying the circular rotations of three different structures, circular cylinder, rectangle and triangle centered in a circular cylinder cavity occupied by Al2O3 nanofluid. The novelty of this work is appearing in simulating the circular rotations of different solid structures on natural convection of a nanofluid-occupied a circular cylinder. The circular cylinder cavity is suspended by heterogeneous/homogeneous porous media. The embedded structures are taken as a circular cylinder, rectangle and triangle with equal areas. The first thermal condition considers the whole structure is heated, the second thermal condition considers the half of the structure is heated and the other is cooled and the third thermal condition considers the quarter of the structure is heated and the others are cooled. The outer boundary of cylinder cavity is cooled. Due to the small angular velocity ω=3.15 (low rotational speeds), then the natural convection case will be considered only. The results are representing the temperature, velocity fields. The simulations revealed that the presence of the inner hot/cold structures affects on the velocity distributions and temperature field inside a circular cylinder cavity. The triangle shape has introduced the highest temperature distributions and maximum values of the velocity fields compare to other shapes inside a circular cylinder cavity. The homogeneous porous level reduces the maximum values of velocity field by 25% compared to the heterogeneous porous level.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2023 Document type: Article Affiliation country: Saudi Arabia Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2023 Document type: Article Affiliation country: Saudi Arabia Country of publication: United kingdom