Your browser doesn't support javascript.
loading
Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding.
Wang, Kuien; Liu, Kefeng; Dai, Lin; Si, Chuanling.
Affiliation
  • Wang K; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Department of Military Sick and Wounded Administration, No 983 Hospital of Chinese People's Liberation Army, Tianjin 300457, China.
  • Liu K; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
  • Dai L; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
  • Si C; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
Int J Biol Macromol ; 258(Pt 2): 129046, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38154714
ABSTRACT
Constructing a high-performance ultraviolet shielding film is an effective way for addressing the growing problem of ultraviolet radiation. However, it is still a great challenge to achieve a combination of multifunctional, excellent mechanical properties and low cost. Here, inspired by the multiscale structure of biomaterials and features of lignin, a multifunctional composite film (CNF/CMF/Lig-Ag) is constructed via a facile vacuum-filtration method by introducing micron-sized cellulose fibers (CMF) and lignin-silver nanoparticles (Lig-Ag NPs) into the cellulose nanofibers (CNF) film network. In this composite film, the microfibers interweave with nanofibers to form a multiscale three-dimensional network, which ensures satisfactory mechanical properties of the composite film. Meanwhile, the Lig-Ag NPs are employed as a multifunctional filler to enhance the composite film's antioxidant, antibacterial and ultraviolet shielding abilities. As a result, the prepared CNF/CMF/Lig-Ag composite film demonstrates excellent mechanical properties (with tensile strength of 133.8 MPa and fracture strain of 7.4 %), good biocompatibility, high thermal stability, potent antioxidant and antibacterial properties. More importantly, such composite film achieves a high ultraviolet shielding rate of 98.2 % for ultraviolet radiation A (UVA) and 99.4 % for ultraviolet radiation B (UVB), respectively. Therefore, the prepared CNF/CMF/Lig-Ag composite film shows great potential in application of ultraviolet protection.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Metal Nanoparticles / Lignin Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Metal Nanoparticles / Lignin Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands