Your browser doesn't support javascript.
loading
Comparative chloroplast genomics of 24 species shed light on the genome evolution and phylogeny of subtribe Coelogyninae (Orchidaceae).
Li, Lin; Wu, Qiuping; Zhai, Junwen; Wu, Kunlin; Fang, Lin; Li, Mingzhi; Zeng, Songjun; Li, Shijin.
Affiliation
  • Li L; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
  • Wu Q; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhai J; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
  • Wu K; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Fang L; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  • Li M; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
  • Zeng S; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li S; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
BMC Plant Biol ; 24(1): 31, 2024 Jan 05.
Article in En | MEDLINE | ID: mdl-38182989
ABSTRACT

BACKGROUND:

The orchids of the subtribe Coelogyninae are among the most morphologically diverse and economically important groups within the subfamily Epidendroideae. Previous molecular studies have revealed that Coelogyninae is an unambiguously monophyletic group. However, intergeneric and infrageneric relationships within Coelogyninae are largely unresolved. There has been long controversy over the classification among the genera within the subtribe.

RESULTS:

The complete chloroplast (cp.) genomes of 15 species in the subtribe Coelogyninae were newly sequenced and assembled. Together with nine available cp. genomes in GenBank from representative clades of the subtribe, we compared and elucidated the characteristics of 24 Coelogyninae cp. genomes. The results showed that all cp. genomes shared highly conserved structure and contained 135 genes arranged in the same order, including 89 protein-coding genes, 38 tRNAs, and eight rRNAs. Nevertheless, structural variations in relation to particular genes at the IR/SC boundary regions were identified. The diversification pattern of the cp. genomes showed high consistency with the phylogenetic placement of Coelogyninae. The number of different types of SSRs and long repeats exhibited significant differences in the 24 Coelogyninae cp. genomes, wherein mononucleotide repeats (A/T), and palindromic repeats were the most abundant. Four mutation hotspot regions (ycf1a, ndhF-rp132, psaC-ndhE, and rp132-trnL) were determined, which could serve as effective molecular markers. Selection pressure analysis revealed that three genes (ycf1a, rpoC2 and ycf2 genes) might have experienced apparent positive selection during the evolution. Using the alignments of whole cp. genomes and protein-coding sequences, this study presents a well-resolved phylogenetic framework of Coelogyninae.

CONCLUSION:

The inclusion of 55 plastid genome data from a nearly complete generic-level sampling provide a comprehensive view of the phylogenetic relationships among genera and species in subtribe Coelogyninae and illustrate the diverse genetic variation patterns of plastid genomes in this species-rich plant group. The inferred relationships and informally recognized major clades within the subtribe are presented. The genetic markers identified here will facilitate future studies on the genetics and phylogeny of subtribe Coelogyninae.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Orchidaceae Type of study: Prognostic_studies Language: En Journal: BMC Plant Biol Journal subject: BOTANICA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Orchidaceae Type of study: Prognostic_studies Language: En Journal: BMC Plant Biol Journal subject: BOTANICA Year: 2024 Document type: Article Affiliation country: China