Your browser doesn't support javascript.
loading
Bottom-to-top modeling of epoxy resins: From atomic models to mesoscale fracture mechanisms.
Konrad, Julian; Zahn, Dirk.
Affiliation
  • Konrad J; Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
  • Zahn D; Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
J Chem Phys ; 160(2)2024 Jan 14.
Article in En | MEDLINE | ID: mdl-38193558
ABSTRACT
We outline a coarse-grained model of epoxy resins (bisphenol-F-diglycidyl-ether/3,5-diethyltoluene-2,4-diamine) to describe elastic and plastic deformation, cavitation, and fracture at the µm scale. For this, molecular scale simulation data collected from quantum and molecular mechanics studies are coarsened into an effective interaction potential featuring a single type of beads that mimic 100 nm scale building blocks of the material. Our model allows bridging the time-length scale problem toward experimental tensile testing, thus effectively reproducing the deformation and fracture characteristics observed for strain rates of 10-1 to 10-5 s-1. This paves the way to analyzing viscoelastic deformation, plastic behavior, and yielding characteristics by means of "post-atomistic" simulation models that retain the molecular mechanics of the underlying epoxy resin at length scales of 0.1-10 µm.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Chem Phys Year: 2024 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Chem Phys Year: 2024 Document type: Article Affiliation country: Germany