Your browser doesn't support javascript.
loading
A back-translational study of descending interactions with the induction of hyperalgesia by high-frequency electrical stimulation in rats and humans.
Patel, Ryan; Taylor, Joseph L; Dickenson, Anthony H; McMahon, Stephen B; Bannister, Kirsty.
Affiliation
  • Patel R; King's College London, Wolfson Centre, Guy's Campus, London, United Kingdom.
  • Taylor JL; King's College London, Wolfson Centre, Guy's Campus, London, United Kingdom.
  • Dickenson AH; Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
  • McMahon SB; King's College London, Wolfson Centre, Guy's Campus, London, United Kingdom.
  • Bannister K; King's College London, Wolfson Centre, Guy's Campus, London, United Kingdom.
Pain ; 165(9): 1978-1989, 2024 Sep 01.
Article in En | MEDLINE | ID: mdl-38198231
ABSTRACT
ABSTRACT In humans and animals, high-frequency electrocutaneous stimulation (HFS) induces an "early long-term potentiation-like" sensitisation, where synaptic plasticity is underpinned by an ill-defined interaction between peripheral input and central modulatory processes. The relative contributions of these processes to the initial pain or nociceptive response likely differ from those that underpin development of the heightened response. To investigate the impact of HFS-induced hyperalgesia on pain and nociception in perception and neural terms, respectively, and to explore the impact of descending inhibitory pathway activation on the development of HFS-induced hyperalgesia, we performed parallel studies utilising identical stimuli to apply HFS concurrent to (1) a conditioned pain modulation paradigm during psychophysical testing in healthy humans or (2) a diffuse noxious inhibitory controls paradigm during in vivo electrophysiological recording of spinal neurones in healthy anaesthetised rats. High-frequency electrocutaneous stimulation alone induced enhanced perceptual responses to pinprick stimuli in cutaneous areas secondary to the area of electrical stimulation in humans and increased the excitability of spinal neurones which exhibited stimulus intensity-dependent coded responses to pinprick stimulation in a manner that tracked with human psychophysics, supporting their translational validity. Application of a distant noxious conditioning stimulus during HFS did not alter perceived primary or secondary hyperalgesia in humans or the development of primary or secondary neuronal hyperexcitability in rats compared with HFS alone, suggesting that, upon HFS-response initiation in a healthy nervous system, excitatory signalling escapes inhibitory control. Therefore, in this model, dampening facilitatory mechanisms rather than augmenting top-down inhibitions could prevent pain development.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rats, Sprague-Dawley / Electric Stimulation / Hyperalgesia Limits: Adult / Animals / Female / Humans / Male Language: En Journal: Pain Year: 2024 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rats, Sprague-Dawley / Electric Stimulation / Hyperalgesia Limits: Adult / Animals / Female / Humans / Male Language: En Journal: Pain Year: 2024 Document type: Article Affiliation country: United kingdom