Your browser doesn't support javascript.
loading
Oil mistparticulate matter exposure induces hyperlipidemia-related inflammation via microbiota/ SCFAs/GPR43 axis inhibition and TLR4/NF-κB activation.
Liu, Huanliang; Nie, Huipeng; Shi, Yue; Lai, Wenqing; Bian, Liping; Tian, Lei; Li, Kang; Xi, Zhuge; Lin, Bencheng.
Affiliation
  • Liu H; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China. Electronic address: tjliuhuanliang@126.com.
  • Nie H; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Shi Y; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Lai W; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Bian L; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Tian L; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Li K; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Xi Z; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China.
  • Lin B; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin, 300050, China. Electronic address: linbencheng123@126.com.
Environ Pollut ; 344: 123331, 2024 Mar 01.
Article in En | MEDLINE | ID: mdl-38199482
ABSTRACT
Metabolites produced by the human gut microbiota play an important role in fighting and intervening in inflammatory diseases. It remains unknown whether immune homeostasis is influenced by increasing concentrations of air pollutants such as oil mist particulate matters (OMPM). Herein, we report that OMPM exposure induces a hyperlipidemia-related phenotype through microbiota dysregulation-mediated downregulation of the anti-inflammatory short-chain fatty acid (SCFA)-GPR43 axis and activation of the inflammatory pathway. A rat model showed that exposure to OMPM promoted visceral and serum lipid accumulation and inflammatory cytokine upregulation. Furthermore, our research indicated a reduction in both the "healthy" microbiome and the production of SCFAs in the intestinal contents following exposure to OMPM. The SCFA receptor GPR43 was downregulated in both the ileum and white adipose tissues (WATs). The OMPM treatment mechanism was as follows the gut barrier was compromised, leading to increased levels of lipopolysaccharide (LPS). This increase activated the Toll-like receptor 4 Nuclear Factor-κB (TLR4-NF-κB) signaling pathway in WATs, consequently fueling hyperlipidemia-related inflammation through a positive-feedback circuit. Our findings thus imply that OMPM pollution leads to hyperlipemia-related inflammation through impairing the microbiota-SCFAs-GPR43 pathway and activating the LSP-induced TLR4-NF-κB cascade; our findings also suggest that OMPM pollution is a potential threat to humanmicrobiota dysregulation and the occurrence of inflammatory diseases.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gastrointestinal Microbiome / Hyperlipidemias Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gastrointestinal Microbiome / Hyperlipidemias Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: United kingdom