Your browser doesn't support javascript.
loading
The water-retaining functional slow-release fertilizer modified by carboxymethyl chitosan.
Liu, Mingshang; Li, Jinxi; Ren, Bincheng; Liu, Yan; Liu, Zihan; Zhou, Tongtong; Cheng, Dongdong.
Affiliation
  • Liu M; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Li J; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Ren B; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Liu Y; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Liu Z; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Zhou T; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
  • Cheng D; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR Chin
Carbohydr Polym ; 328: 121744, 2024 Mar 15.
Article in En | MEDLINE | ID: mdl-38220354
ABSTRACT
To solve the problem of shortage of agricultural water resources and low utilization rate of fertilizer, a slow-release fertilizer based on chitosan modified water retention function was developed. Solution polymerization and semi-interpenetrating network technology were used to load urea aldehyde into carboxymethyl chitosan superabsorbent resin network. This technology realizes the simultaneous slow release of nutrients and water by using modified chitosan, which has important implications for the application of chitosan in agriculture to regulate the soil water and fertilizer conditions. The optimal preparation conditions were MBA 0.07 %, KPS 0.8 %, AM to AA mass ratio of 0.31, CMC content of 10 %, AA neutralization degree 85 %, UF 20 %, AA+AM mass sum of 10 g, reaction temperature 70 °C and reaction time 2 h. The maximum water absorption rate of the optimized NC reached 172.3 g/g. The cumulative release of nitrogen in 30 days was 83.67 %. The application of NC in sandy soil promoted seed germination and growth. The comprehensive results indicate that NC has broad application prospects in arid areas based on its excellent water retention and nutrient release performance.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Carbohydr Polym Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Carbohydr Polym Year: 2024 Document type: Article