Your browser doesn't support javascript.
loading
Machine Learning-assisted immunophenotyping of peripheral blood identifies innate immune cells as best predictor of response to induction chemo-immunotherapy in head and neck squamous cell carcinoma - knowledge obtained from the CheckRad-CD8 trial.
Hecht, Markus; Frey, Benjamin; Gaipl, Udo S; Tianyu, Xie; Eckstein, Markus; Donaubauer, Anna-Jasmina; Klautke, Gunther; Illmer, Thomas; Fleischmann, Maximilian; Laban, Simon; Hautmann, Matthias G; Tamaskovics, Bálint; Brunner, Thomas B; Becker, Ina; Zhou, Jian-Guo; Hartmann, Arndt; Fietkau, Rainer; Iro, Heinrich; Döllinger, Michael; Gostian, Antoniu-Oreste; Kist, Andreas M.
Affiliation
  • Hecht M; Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany; Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Ger
  • Frey B; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Gaipl US; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Tianyu X; Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Eckstein M; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Donaubauer AJ; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Klautke G; Department of Radiation Oncology, Hospital Chemnitz, Chemnitz, Germany.
  • Illmer T; Private Praxis Oncology, Arnoldstraße, Dresden, Germany.
  • Fleischmann M; Department of Radiation Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.
  • Laban S; Department of Otolaryngology - Head & Neck Surgery, University Hospital Ulm, Universität Ulm, Ulm, Germany.
  • Hautmann MG; Department of Radiotherapy, University Hospital Regensburg, Regensburg, Germany; Department of Radiotherapy and Radiation Oncology, Hospital Traunstein, Traunstein, Germany.
  • Tamaskovics B; Department of Radiation Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorfy, Düsseldorf, Germany.
  • Brunner TB; Department of Radiation Oncology, Medical University of Graz, Graz, Austria; Department of Radiation Oncology, University Hospitals Magdeburg, Magdeburg, Germany.
  • Becker I; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Zhou JG; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Oncology, The Second Affiliated Hospital of Zunyi Medical Univ
  • Hartmann A; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Fietkau R; Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
  • Iro H; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany.
  • Döllinger M; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Gostian AO; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Merciful Brothers Hospita
  • Kist AM; Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität
Neoplasia ; 49: 100953, 2024 03.
Article in En | MEDLINE | ID: mdl-38232493
ABSTRACT

PURPOSE:

Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC.

METHODS:

The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy.

RESULTS:

The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent.

CONCLUSIONS:

Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Squamous Cell / Head and Neck Neoplasms Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Neoplasia Journal subject: NEOPLASIAS Year: 2024 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Squamous Cell / Head and Neck Neoplasms Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Neoplasia Journal subject: NEOPLASIAS Year: 2024 Document type: Article Country of publication: United States