Your browser doesn't support javascript.
loading
Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives.
Liu, Subiao; Wang, You-Zi; Tang, Yu-Feng; Fu, Xian-Zhu; Luo, Jing-Li.
Affiliation
  • Liu S; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
  • Wang YZ; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
  • Tang YF; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
  • Fu XZ; College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China.
  • Luo JL; College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China.
Small ; 20(26): e2311130, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38247198
ABSTRACT
Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany