Your browser doesn't support javascript.
loading
Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye.
Alshehri, Amal; Alharbi, Laila; Wani, Aiyaz Ahmad; Malik, Maqsood Ahmad.
Affiliation
  • Alshehri A; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
  • Alharbi L; Chemistry Department, Faculty of Sciences and Arts in Baljurashi, Albaha University, Albaha 65779, Saudi Arabia.
  • Wani AA; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
  • Malik MA; Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia, New Delhi 110025, India.
Toxics ; 12(1)2024 Jan 16.
Article in En | MEDLINE | ID: mdl-38251032
ABSTRACT
Globally, the textile industry contributes to pollution through accidental discharges or discharge of contaminated wastewater into waterways, significantly affecting water quality. These pollutants, including dye molecules, are environmental hazards for aquatic and terrestrial life. The field of visible light-mediated photocatalysis has experienced rapid growth, driven by the utilization of photocatalysts that can absorb low-energy visible light and effectively degrade dyes. In the present study, we report a simple method to controllably synthesize Fe2O3, ZnO, and ZnFe2O4 using the one-pot synthesis method. In the subsequent step, copper (Cu) was deposited on the surface of ZnFe2O4 (forming ZnFe2O4-Cu) using a facile, green, and cost-effective method. The synthesized samples were characterized using various techniques, including XRD, UV-Vis DRS, FT-IR, SEM-EDX, HR-TEM, XPS, PL, and BET analysis. These techniques were employed to investigate the composition, morphology, structure, and photophysical properties of as-prepared samples. The ZnFe2O4-Cu nanocomposite demonstrated efficient photocatalytic activity for degrading RhB dye pollutants under visible light. The photocatalyst was successfully reused for three consecutive cycles without significantly decreasing performance. Furthermore, during the study, the radical scavenging test emphasized the role of different radicals in the degradation of dye pollutants. This research has the potential to enable the efficient production of high-performance photocatalysts that can rapidly eliminate ecologically harmful dyes from aqueous solutions.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Toxics Year: 2024 Document type: Article Affiliation country: Saudi Arabia

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Toxics Year: 2024 Document type: Article Affiliation country: Saudi Arabia