Your browser doesn't support javascript.
loading
[Translated article] Mechanical resistance of polylactic acid bone matrices developed by 3D printing for the reconstruction of bone defects.
Ortega-Yago, A; Ferràs-Tarragó, J; de la Calva-Ceinos, C; Baeza-Oliete, J; Angulo-Sánchez, M A; Baixauli-García, I; Arguelles-Linares, F; Amaya-Valero, J V; Baixauli-García, F; Medina-Bessó, P.
Affiliation
  • Ortega-Yago A; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Ferràs-Tarragó J; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain. Electronic address: cotferras@gmail.com.
  • de la Calva-Ceinos C; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Baeza-Oliete J; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Angulo-Sánchez MA; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Baixauli-García I; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Arguelles-Linares F; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Amaya-Valero JV; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Baixauli-García F; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
  • Medina-Bessó P; Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
Rev Esp Cir Ortop Traumatol ; 68(3): T262-T270, 2024.
Article in En, Es | MEDLINE | ID: mdl-38253238
ABSTRACT

INTRODUCTION:

Bone defects are one of the main limitations in orthopaedic surgery and traumatology. For this reason, multiple bone replacement systems have been developed, either by prosthetic implant or by substitution with osteoforming substances, whose limitations are their survival and lack of structurality, respectively. The objective of this work is the generation of a new material for the creation of biologically active structures that have sufficient tensile strength to maintain the structure during remodelling. MATERIAL AND

METHODS:

A new filament based on the fusion of natural polylactide acid (PLA) powder was designed for the generation of pieces by means of fused deposition modelling (FDM) on which to carry out tensile mechanical tests of osteosynthesis material. A total of 13 groups with different cortical thickness, filling and layer height were carried out, with 10 tensile tests in each group, defining the tensile breaking limit for each group. The regression lines for each group and their mechanical resistance to traction on the filament used were determined.

RESULTS:

The filament ratio per contact surface unit with the osteosynthesis used was the main determinant of the mechanical resistance to traction, either at the expense of the increase in cortical thickness or by the increase in the percentage of cancellous bone filling. Layer height had a minor effect on tensile strength. The regression value was high for cortical thickness and cancellous filling, being elements with a predictable biomechanical behaviour.

CONCLUSIONS:

The new methodology allows the creation of personalised neutral and implantable PLA bone matrices for the reconstruction of large bone defects by means of 3D printing by FDM with a mechanical resistance to traction greater than that of current biological support structures.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En / Es Journal: Rev Esp Cir Ortop Traumatol Year: 2024 Document type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En / Es Journal: Rev Esp Cir Ortop Traumatol Year: 2024 Document type: Article Affiliation country: Spain