Your browser doesn't support javascript.
loading
How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration.
Stephani, Justus C; Gerhards, Luca; Khairalla, Bishoy; Solov'yov, Ilia A; Brand, Izabella.
Affiliation
  • Stephani JC; Institute of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
  • Gerhards L; Institute of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
  • Khairalla B; Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
  • Solov'yov IA; Institute of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
  • Brand I; Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
ACS Infect Dis ; 10(2): 763-778, 2024 02 09.
Article in En | MEDLINE | ID: mdl-38259029
ABSTRACT
Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lipopolysaccharides / Antimicrobial Peptides Language: En Journal: ACS Infect Dis Year: 2024 Document type: Article Affiliation country: Germany Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lipopolysaccharides / Antimicrobial Peptides Language: En Journal: ACS Infect Dis Year: 2024 Document type: Article Affiliation country: Germany Country of publication: United States