Your browser doesn't support javascript.
loading
A quantitative proteomic study reveals oxidative stress and synapse-related proteins contributed to TDCIPP exposure induced neurotoxicity.
Zou, Chunli; Yang, Tingting; Zhang, Jiuhong; Chen, Xiao; Zhao, Jing; Wu, Desheng; Yang, Chen; Liu, Peiyi; Huang, Xinfeng; Liu, Jianjun; Xu, Benhong.
Affiliation
  • Zou C; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China; College of Public Health, Zunyi Medical University, Zunyi 563000, China.
  • Yang T; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China; College of Public Health, Zunyi Medical University, Zunyi 563000, China.
  • Zhang J; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Chen X; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Zhao J; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Wu D; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Yang C; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Liu P; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Huang X; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
  • Liu J; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China. Electronic address: toxic_01@szcdc.net.
  • Xu B; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China. Electronic address: xubenhong@szcdc.net.
Ecotoxicol Environ Saf ; 271: 116005, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38262093
ABSTRACT
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been consistently identified in various environmental media and biological specimens. Current understanding of the in vivo toxicities of TDCIPP is limited, especially for potential for neurotoxic and cognitive impairment effects. To better evaluate the potential adverse effect of the chemical on learning and memory, Sprague Dawley (SD) rats were administered TDCIPP via gavage at doses of 40, 120, and 360 mg/kg/day for a period of 90 days. Quantitative proteomic analysis, immunohistochemistry, and Western blotting were employed to assess alterations in proteins following exposure to TDCIPP. An open field test and the Morris Water Maze were used to assess anxiety and spatial learning memory capacity. Administration of TDCIPP induced anxiety and cognitive impairments in rats. Additionally, a noteworthy decrease in the number of neurons was observed in the hippocampal CA3 and dentate gyrus (DG) regions. Proteomic and bioinformatic analyses revealed dysregulation of numerous hippocampal proteins, particularly those associated with synapses (PKN1) or oxidative stress (GSTM4, NQO1, and BMAL1), which was further confirmed by Western blot analysis. In sum, the cognitive impairment of rats caused by TDCIPP exposure was associated with dysregulation of synaptic and oxidative stress-related proteins.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organophosphorus Compounds / Organophosphates / Proteomics Limits: Animals Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organophosphorus Compounds / Organophosphates / Proteomics Limits: Animals Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Document type: Article Affiliation country: China