Loss of the Golgi-localized v-ATPase subunit does not alter insulin granule formation or pancreatic islet ß-cell function.
Am J Physiol Endocrinol Metab
; 326(3): E245-E257, 2024 Mar 01.
Article
in En
| MEDLINE
| ID: mdl-38265287
ABSTRACT
Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and ß-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a ß-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, ß-cell function was well preserved. ß-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to ß-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic ß-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using ß-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Diabetes Mellitus, Type 2
/
Insulin-Secreting Cells
Limits:
Animals
Language:
En
Journal:
Am J Physiol Endocrinol Metab
Journal subject:
ENDOCRINOLOGIA
/
FISIOLOGIA
/
METABOLISMO
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
United States