Your browser doesn't support javascript.
loading
J-Net: Improved U-Net for Terahertz Image Super-Resolution.
Yeo, Woon-Ha; Jung, Seung-Hwan; Oh, Seung Jae; Maeng, Inhee; Lee, Eui Su; Ryu, Han-Cheol.
Affiliation
  • Yeo WH; Department of Artificial Intelligence Convergence, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.
  • Jung SH; Taean AI Industry Promotion Agency (TAIIPA), Taean County 32154, Republic of Korea.
  • Oh SJ; Department of Artificial Intelligence Convergence, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.
  • Maeng I; Taean AI Industry Promotion Agency (TAIIPA), Taean County 32154, Republic of Korea.
  • Lee ES; YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, 50-1 Yon-sei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
  • Ryu HC; YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, 50-1 Yon-sei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Sensors (Basel) ; 24(3)2024 Jan 31.
Article in En | MEDLINE | ID: mdl-38339649
ABSTRACT
Terahertz (THz) waves are electromagnetic waves in the 0.1 to 10 THz frequency range, and THz imaging is utilized in a range of applications, including security inspections, biomedical fields, and the non-destructive examination of materials. However, THz images have a low resolution due to the long wavelength of THz waves. Therefore, improving the resolution of THz images is a current hot research topic. We propose a novel network architecture called J-Net, which is an improved version of U-Net, to achieve THz image super-resolution. It employs simple baseline blocks which can extract low-resolution (LR) image features and learn the mapping of LR images to high-resolution (HR) images efficiently. All training was conducted using the DIV2K+Flickr2K dataset, and we employed the peak signal-to-noise ratio (PSNR) for quantitative comparison. In our comparisons with other THz image super-resolution methods, J-Net achieved a PSNR of 32.52 dB, surpassing other techniques by more than 1 dB. J-Net also demonstrates superior performance on real THz images compared to other methods. Experiments show that the proposed J-Net achieves a better PSNR and visual improvement compared with other THz image super-resolution methods.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sensors (Basel) Year: 2024 Document type: Article Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sensors (Basel) Year: 2024 Document type: Article Country of publication: Switzerland