Your browser doesn't support javascript.
loading
A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.
Otto, Ryan M; Turska-Nowak, Agata; Brown, Philip M; Reynolds, Kimberly A.
Affiliation
  • Otto RM; Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.
  • Turska-Nowak A; Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.
  • Brown PM; Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.
  • Reynolds KA; Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA; Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA. Electronic address: kimberly.reynolds@utsouthwe
Cell Syst ; 15(2): 134-148.e7, 2024 Feb 21.
Article in En | MEDLINE | ID: mdl-38340730
ABSTRACT
Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Epistasis, Genetic / Escherichia coli Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Cell Syst Year: 2024 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Epistasis, Genetic / Escherichia coli Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Cell Syst Year: 2024 Document type: Article Affiliation country: United States