Your browser doesn't support javascript.
loading
Bioinspired cytomembrane coating besieges tumor for blocking metabolite transportation.
Jia, Qingyan; Yue, Zilin; Li, Yuanying; Zhang, Yunxiu; Zhang, Jianhong; Nie, Renhao; Li, Peng.
Affiliation
  • Jia Q; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ning
  • Yue Z; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
  • Li Y; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
  • Zhang Y; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China; School of Flexible Electronics (SoFE) and Henan Institute of Flex
  • Zhang J; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
  • Nie R; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
  • Li P; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. Electronic address: iampli@nwpu.edu.cn.
Sci Bull (Beijing) ; 69(7): 933-948, 2024 Apr 15.
Article in En | MEDLINE | ID: mdl-38350739
ABSTRACT
The metabolite transport inhibition of tumor cells holds promise to achieve anti-tumor efficacy. Herein, we presented an innovative strategy to hinder the delivery of metabolites through the in-situ besieging tumor cells with polyphenolic polymers that strongly adhere to the cytomembrane of tumor cells. Simultaneously, these polymers underwent self-crosslinking under the induction of tumor oxidative stress microenvironment to form an adhesive coating on the surface of the tumor cells. This polyphenol coating effectively obstructed glucose uptake, reducing metabolic products such as lactic acid, glutathione, and adenosine triphosphate, while also causing reactive oxygen species to accumulate in the tumor cells. The investigation of various tumor models, including 2D cells, 3D multicellular tumor spheroids, and xenograft tumors, demonstrated that the polyphenolic polymers effectively inhibited the growth of tumor cells by blocking key metabolite transport processes. Moreover, this highly adhesive coating could bind tumor cells to suppress their metastasis and invasion. This work identified polyphenolic polymers as a promising anticancer candidate with a mechanism by impeding the mass transport of tumor cells.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neoplasms Limits: Humans Language: En Journal: Sci Bull (Beijing) Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neoplasms Limits: Humans Language: En Journal: Sci Bull (Beijing) Year: 2024 Document type: Article