Your browser doesn't support javascript.
loading
Modulation of YBX1-mediated PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to oxaliplatin in gastric cancer.
Lin, Chunlin; Lin, Penghang; Yao, Hengxin; Liu, Songyi; Lin, Xiang; He, Ruofan; Teng, Zuhong; Zuo, Xinyi; Li, Yuxuan; Ye, Jianxin; Zhu, Guangwei.
Affiliation
  • Lin C; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Lin P; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Yao H; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Liu S; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Lin X; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • He R; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Teng Z; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fuji
  • Zuo X; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China.
  • Li Y; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China.
  • Ye J; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated H
  • Zhu G; Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated H
Cancer Lett ; 587: 216712, 2024 Apr 10.
Article in En | MEDLINE | ID: mdl-38364962
ABSTRACT
Gastric cancer (GC) is a common malignant tumor of the digestive tract, and chemoresistance significantly impacts GC patients' prognosis. PANoptosis has been associated with oxaliplatin-induced cell death. However, the direct regulatory role of YBX1 in cellular chemoresistance through PANoptosis remains unclear. In this study, we investigated the impact of YBX1 on regulating PANoptosis and its influence on the resistance of gastric cancer cells to oxaliplatin. Through overexpression and silencing experiments, we assessed YBX1's effect on proliferation and PANoptosis regulation in gastric cancer cells. Additionally, we identified PPM1B and USP10 as interacting proteins with YBX1 and confirmed their influence on YBX1 molecular function and protein expression levels. Our results demonstrate that YBX1 suppresses PANoptosis, leading to enhanced resistance of gastric cancer cells to oxaliplatin. Furthermore, we found that PPM1B and USP10 play critical roles in regulating YBX1-mediated PANoptosis inhibition. PPM1B directly interacts with YBX1, causing dephosphorylation of YBX1 at serine 314 residue. This dephosphorylation process affects the deubiquitination of YBX1 mediated by USP10, resulting in decreased YBX1 protein expression levels and impacting PANoptosis and oxaliplatin resistance in gastric cancer cells. Additionally, we discovered that the 314th amino acid of YBX1 has a profound impact on its own protein expression abundance, thereby affecting the functionality of YBX1. In conclusion, our study reveals the significance of PPM1B-mediated dephosphorylation of YBX1 and USP10-mediated deubiquitination in regulating PANoptosis and sensitivity to oxaliplatin in gastric cancer cells. These findings offer a potential therapeutic strategy for patients with oxaliplatin-resistant gastric cancer.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stomach Neoplasms Limits: Humans Language: En Journal: Cancer Lett Year: 2024 Document type: Article Country of publication: Ireland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stomach Neoplasms Limits: Humans Language: En Journal: Cancer Lett Year: 2024 Document type: Article Country of publication: Ireland