Your browser doesn't support javascript.
loading
Ionic Thermoelectric Generators in Vertical and Planar Topologies Based on Fluorinated Polymer Hybrid Materials with Ionic Liquids.
Pereira, Nelson; Afonso, Luis; Salado, Manuel; Tubio, Carmen R; Correia, Daniela M; Costa, Carlos M; Lanceros-Mendez, Senentxu.
Affiliation
  • Pereira N; Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
  • Afonso L; Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
  • Salado M; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.
  • Tubio CR; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.
  • Correia DM; Centre of Chemistry, University of Minho, Braga, 4710-057, Portugal.
  • Costa CM; Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
  • Lanceros-Mendez S; Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
Macromol Rapid Commun ; 45(10): e2400041, 2024 May.
Article in En | MEDLINE | ID: mdl-38366845
ABSTRACT
Ionic thermoelectrics (TEs), in which voltage generation is based on ion migration, are suitable for applications based on their low cost, high flexibility, high ionic conductivity, and wide range of Seebeck coefficients. This work reports on the development of ionic TE materials based on the poly(vinylidene fluoride-trifluoroethylene), Poly(VDF-co-TrFE), as host polymer blended with different contents of the ionic liquid, IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The morphology, physico-chemical, thermal, mechanical, and electrical properties of the samples are evaluated together with the TE response. It is demonstrated that the IL acts as a nucleating agent for polymer crystallization. The mechanical properties and ionic conductivity values are dependent on the IL content. A high room temperature ionic conductivity of 0.008 S cm-1 is obtained for the sample with 60 wt% of [EMIM][TFSI] IL. The TE properties depend on both IL content and device topology-vertical or planar-the largest generated voltage range being obtained for the planar topology and the sample with 10 wt% of IL content, characterized by a Seebeck coefficient of 1.2 mV K-1. Based on the obtained maximum power density of 4.9 µW m-2, these materials are suitable for a new generation of TE devices.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Electric Conductivity / Ionic Liquids Language: En Journal: Macromol Rapid Commun Year: 2024 Document type: Article Affiliation country: Portugal

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Electric Conductivity / Ionic Liquids Language: En Journal: Macromol Rapid Commun Year: 2024 Document type: Article Affiliation country: Portugal