Your browser doesn't support javascript.
loading
Improving Fast-Charging Capability of High-Voltage Spinel LiNi0.5 Mn1.5 O4 Cathode under Long-Term Cyclability through Co-Doping Strategy.
Gao, Xin; Hai, Feng; Chen, Wenting; Yi, Yikun; Guo, Jingyu; Xue, Weicheng; Tang, Wei; Li, Mingtao.
Affiliation
  • Gao X; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Hai F; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Chen W; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Yi Y; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Guo J; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Xue W; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Tang W; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
  • Li M; Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049, China.
Small Methods ; : e2301759, 2024 Feb 21.
Article in En | MEDLINE | ID: mdl-38381109
ABSTRACT
Co-free spinel LiNi0.5 Mn1.5 O4 (LNMO) is emerging as a promising contender for designing next generation high-energy-density and fast-charging Li-ion batteries, due to its high operating voltage and good Li+ diffusion rate. However, further improvement of the Li+ diffusion ability and simultaneous resolution of Mn dissolution still pose significant challenges for their practical application. To tackle these challenges, a simple co-doping strategy is proposed. Compared to Pure-LNMO, the extended lattice in resulting LNMO-SbF sample provides wider Li+ migration channels, ensuring both enhanced Li+ transport kinetics, and lower energy barrier. Moreover, Sb creating structural pillar and stronger TM─F bond together provides a stabilized spinel structure, which stems from the suppression of detrimental irreversible phase transformation during cycling related to Mn dissolution. Benefiting from the synergistic effect, the LNMO-SbF material exhibits a superior reversible capacity (111.4 mAh g-1 at 5C, and 70.2 mAh g-1 after 450 cycles at 10C) and excellent long-term cycling stability at high current density (69.4% capacity retention at 5C after 1000 cycles). Furthermore, the LNMO-SbF//graphite full cell delivers an exceptional retention rate of 96.9% after 300 cycles, and provides a high energy density at 3C even with a high loading. This work provides valuable insight into the design of fast-charging cathode materials for future high energy density lithium-ion batteries.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Methods Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Methods Year: 2024 Document type: Article Affiliation country: China Country of publication: Germany