Jewelry rock discrimination as interpretable data using laser-induced breakdown spectroscopy and a convolutional LSTM deep learning algorithm.
Sci Rep
; 14(1): 5169, 2024 Mar 02.
Article
in En
| MEDLINE
| ID: mdl-38431680
ABSTRACT
In this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN-LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN-LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance. For the first time, this paper interprets the Convolutional LSTM effectiveness layer by layer in self-adaptively obtaining LIBS features and the quantitative data of major chemical elements in jewelry rocks. Moreover, Lasso method is applied on data as a factor for investigation of interoperability. The results demonstrated that LIBS can be essentially combined with a deep learning algorithm for the classification of different jewelry songs. The proposed methodology yielded high accuracy, confirming the effectiveness and suitability of the approach in the discrimination process.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Sci Rep
Year:
2024
Document type:
Article
Affiliation country:
Iran
Country of publication:
United kingdom