Your browser doesn't support javascript.
loading
[Porphyromonas gingivalis outer membrane vesicles activate Toll-like receptor 2 to promote osteoclast differentiation by carrying lipopolysaccharide].
Zou, J K; Cao, Y M; Tian, Y; Li, X; Wu, R X; Tian, B M; Sun, H H; Chen, F M; He, X T.
Affiliation
  • Zou JK; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • Cao YM; College of Life Sciences, Northwest University, Xi'an 710069, China.
  • Tian Y; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • Li X; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • Wu RX; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • Tian BM; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • Sun HH; Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral
  • Chen FM; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
  • He XT; Department of Periodontology, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Xi'an 710
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(3): 237-246, 2024 Mar 09.
Article in Zh | MEDLINE | ID: mdl-38432655
ABSTRACT

Objective:

To investigate the effects of Porphyromonas gingivalis derived outer membrane vesicles (Pg OMV) on osteoclast differentiation of macrophages and its underlying mechanisms.

Methods:

The morphology and the size distribution of Pg OMV were analyzed by transmission electron microscopy and nanoparticle tracing analysis, respectively. The osteoclast precursors were treated with 1, 3 and 10 mg/L Pg OMV (1, 3 and 10 mg/L OMV treatment group) or phosphate buffer solution (PBS)(control group). The formation of osteoclasts was analyzed by tartrate-resistant acid phosphase (TRAP) staining and F-actin staining and real-time quantitative PCR (RT-qPCR) were used to detect the expression of Fos and matrix metallopeptidase 9 (MMP9). Polymyxin B (PMB) was used to block lipopolysaccharide (LPS) and then Pg OMV was used to treat osteoclast precursor (PMB-OMV treatment group), and OMV treatment group was used as control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The effect of Pg OMV on the expression of Toll-like receptor (TLR) 2 and TLR4 in preosteoclasts was detected by Western blotting. The osteoclast precursors were pretreated with 10, 50, 100 and 200 µmol/L C29, an inhibitor of TLR2, and then treated with Pg OMV(OMV+10, 50, 100 and 200 µmol/L C29 treatment group) and OMV treatment group without C29 pretreatment was control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The osteoclast precursor cells were treated with OMV (OMV treatment group) and OMV incubated with PMB (PMB-OMV treatment group) and the expression of TLR2 in osteoclast precursor was detected by Western blotting.

Results:

Pg OMV showed classical vesicular structures, and the average particle size of Pg OMV were 179.2 nm. A large number of actin rings were observed in the 3 and 10 mg/L OMV treatment groups. The percentages of TRAP-positive osteoclast area in 3 mg/L OMV treatment group [(22.6±2.1)%] and 10 mg/L OMV treatment group [(32.0±2.3)%] were significantly increased compared with control group [(4.9±0.5)%] (P<0.001). Compared with the control group (1.000±0.029), the mRNA relative expression of Fos in 3 mg/L OMV treatment group (1.491±0.114) and 10 mg/L OMV treatment group (1.726±0.254) was significantly increased (P=0.013, P=0.001). Compared with the control group (1.007±0.148), the mRNA relative expression of MMP9 in the group of 10 mg/L OMV (2.232±0.097) was significantly increased (P<0.001). Actin ring formation was less in PMB-OMV treatment groups than in OMV treatment groups. The proportion of TRAP-positive osteoclasts area [(14.8±3.8)%] in PMB-OMV treatment group was significantly lower than OMV treatment group [(31.5±6.7) %] (P=0.004). The relative expression of TLR2 in OMV treatment group (1.359±0.134) was significantly higher than that in the control group (1.000±0.000) (t=4.62, P=0.044). Compared with the OMV treatment group [(29.4±1.7)%], 50, 100 and 200 µmol/L C29 significantly decreased the formation of osteoclasts [(24.0±1.7)%, (18.5±2.1)%, (9.1±1.3) %] (P=0.026, P<0.001, P<0.001). TLR2 protein expression in PMB-OMV group (0.780±0.046) was significantly lower than that in OMV group (1.000±0.000)(t=8.32, P=0.001).

Conclusions:

Pg OMV can promote osteoclast differentiation by carrying LPS, TLR2 plays an important role in Pg OMV mediated osteoclast differentiation.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoclasts / Lipopolysaccharides Language: Zh Journal: Zhonghua Kou Qiang Yi Xue Za Zhi Journal subject: ODONTOLOGIA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoclasts / Lipopolysaccharides Language: Zh Journal: Zhonghua Kou Qiang Yi Xue Za Zhi Journal subject: ODONTOLOGIA Year: 2024 Document type: Article