Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts.
Sci Total Environ
; 927: 171448, 2024 Jun 01.
Article
in En
| MEDLINE
| ID: mdl-38453088
ABSTRACT
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Parabens
/
Water Pollutants, Chemical
/
Oryzias
/
Quantitative Structure-Activity Relationship
/
Embryo, Nonmammalian
Limits:
Animals
Language:
En
Journal:
Sci Total Environ
Year:
2024
Document type:
Article
Country of publication:
Netherlands