Your browser doesn't support javascript.
loading
Machine Learning Isotropic g Values of Radical Polymers.
Daniel, Davis Thomas; Mitra, Souvik; Eichel, Rüdiger-A; Diddens, Diddo; Granwehr, Josef.
Affiliation
  • Daniel DT; Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
  • Mitra S; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
  • Eichel RA; Institute of Physical Chemistry, University of Münster, 48149 Münster, Germany.
  • Diddens D; Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
  • Granwehr J; Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany.
J Chem Theory Comput ; 20(6): 2592-2604, 2024 Mar 26.
Article in En | MEDLINE | ID: mdl-38456629
ABSTRACT
Methods for electronic structure computations, such as density functional theory (DFT), are routinely used for the calculation of spectroscopic parameters to establish and validate structure-parameter correlations. DFT calculations, however, are computationally expensive for large systems such as polymers. This work explores the machine learning (ML) of isotropic g values, giso, obtained from electron paramagnetic resonance (EPR) experiments of an organic radical polymer. An ML model based on regression trees is trained on DFT-calculated g values of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) polymer structures extracted from different time frames of a molecular dynamics trajectory. The DFT-derived g values, gisocalc, for different radical densities of PTMA, are compared against experimentally derived g values obtained from in operando EPR measurements of a PTMA-based organic radical battery. The ML-predicted giso values, gisopred, were compared with gisocalc to evaluate the performance of the model. Mean deviations of gisopred from gisocalc were found to be on the order of 0.0001. Furthermore, a performance evaluation on test structures from a separate MD trajectory indicated that the model is sensitive to the radical density and efficiently learns to predict giso values even for radical densities that were not part of the training data set. Since our trained model can reproduce the changes in giso along the MD trajectory and is sensitive to the extent of equilibration of the polymer structure, it is a promising alternative to computationally more expensive DFT methods, particularly for large systems that cannot be easily represented by a smaller model system.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Chem Theory Comput Year: 2024 Document type: Article Affiliation country: Germany Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Chem Theory Comput Year: 2024 Document type: Article Affiliation country: Germany Country of publication: United States