Your browser doesn't support javascript.
loading
σ-Hole Site-Based Interactions within Hypervalent Pnicogen, Halogen, and Aerogen-Bearing Molecules with Lewis Bases: A Comparative Study.
Ibrahim, Mahmoud A A; Mahmoud, Asmaa M M; Shehata, Mohammed N I; Saeed, Rehab R A; Moussa, Nayra A M; Sayed, Shaban R M; Abd El-Rahman, Mohamed Khaled; Shoeib, Tamer.
Affiliation
  • Ibrahim MAA; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
  • Mahmoud AMM; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
  • Shehata MNI; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
  • Saeed RRA; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
  • Moussa NAM; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
  • Sayed SRM; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
  • Abd El-Rahman MK; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
  • Shoeib T; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
ACS Omega ; 9(9): 10391-10399, 2024 Mar 05.
Article in En | MEDLINE | ID: mdl-38463322
ABSTRACT
σ-Hole site-based interactions in the trigonal bipyramidal geometrical structure of hypervalent pnicogen, halogen, and aerogen-bearing molecules with pyridine and NCH Lewis bases (LBs) were comparatively examined. In this respect, the ZF5···, XF3O2···, and AeF2O3···LB complexes (where Z = As, Sb; X = Br, I; Ae = Kr, Xe; and LB = pyridine and NCH) were investigated. The electrostatic potential (EP) analysis affirmations outlined the occurrence of σ-holes on the systems under consideration with disparate magnitudes that increased according to the following order AeF2O3 < XF3O2 < ZF5. In line with EP outcomes, the proficiency of σ-hole site-based interactions increased as the atomic size of the central atom increased with a higher favorability for the pyridine-based complexes over NCH-based ones. The interaction energy showed the most favorable negative values of -35.97, -44.53, and -56.06 kcal/mol for the XeF2O3···, IF3O2···, and SbF5···pyridine complexes, respectively. The preferentiality pattern of the studied interactions could be explained as a consequence of (i) the dramatic rearrangement of ZF5 molecules from the trigonal bipyramid geometry to the square pyramidal one, (ii) the significant and tiny deformation energy in the case of the interaction of XF3O2 molecules with pyridine and NCH, respectively, and (iii) the absence of geometrical deformation within the AeF2O3···pyridine and ···NCH complexes other than the XeF2O3···pyridine one. Quantum theory of atoms in molecules and noncovalent interaction index findings reveal the partially covalent nature of most of the investigated interactions. Symmetry-adapted perturbation theory affirmations declared that the electrostatic component was the driving force beyond the occurrence of the considered interactions. The obtained findings will help in improving our understanding of the effect of geometrical deformation on intermolecular interactions.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Omega Year: 2024 Document type: Article Affiliation country: Egypt

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Omega Year: 2024 Document type: Article Affiliation country: Egypt