Your browser doesn't support javascript.
loading
Multi-Modal Convolutional Parameterisation Network for Guided Image Inverse Problems.
Czerkawski, Mikolaj; Upadhyay, Priti; Davison, Christopher; Atkinson, Robert; Michie, Craig; Andonovic, Ivan; Macdonald, Malcolm; Cardona, Javier; Tachtatzis, Christos.
Affiliation
  • Czerkawski M; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Upadhyay P; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Davison C; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Atkinson R; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Michie C; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Andonovic I; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Macdonald M; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
  • Cardona J; Department of Chemical Engineering, University of Strathclyde, Glasgow G1 1XJ, UK.
  • Tachtatzis C; Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
J Imaging ; 10(3)2024 Mar 12.
Article in En | MEDLINE | ID: mdl-38535149
ABSTRACT
There are several image inverse tasks, such as inpainting or super-resolution, which can be solved using deep internal learning, a paradigm that involves employing deep neural networks to find a solution by learning from the sample itself rather than a dataset. For example, Deep Image Prior is a technique based on fitting a convolutional neural network to output the known parts of the image (such as non-inpainted regions or a low-resolution version of the image). However, this approach is not well adjusted for samples composed of multiple modalities. In some domains, such as satellite image processing, accommodating multi-modal representations could be beneficial or even essential. In this work, Multi-Modal Convolutional Parameterisation Network (MCPN) is proposed, where a convolutional neural network approximates shared information between multiple modes by combining a core shared network with modality-specific head networks. The results demonstrate that these approaches can significantly outperform the single-mode adoption of a convolutional parameterisation network on guided image inverse problems of inpainting and super-resolution.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Imaging Year: 2024 Document type: Article Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Imaging Year: 2024 Document type: Article Country of publication: Switzerland