Your browser doesn't support javascript.
loading
Preliminary Assessment of Tara Gum as a Wall Material: Physicochemical, Structural, Thermal, and Rheological Analyses of Different Drying Methods.
Moscoso-Moscoso, Elibet; Ligarda-Samanez, Carlos A; Choque-Quispe, David; Huamán-Carrión, Mary L; Arévalo-Quijano, José C; De la Cruz, Germán; Luciano-Alipio, Rober; Calsina Ponce, Wilber Cesar; Sucari-León, Reynaldo; Quispe-Quezada, Uriel R; Calderón Huamaní, Dante Fermín.
Affiliation
  • Moscoso-Moscoso E; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Ligarda-Samanez CA; Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Choque-Quispe D; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Huamán-Carrión ML; Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Arévalo-Quijano JC; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • De la Cruz G; Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Luciano-Alipio R; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Calsina Ponce WC; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Sucari-León R; Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Quispe-Quezada UR; Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.
  • Calderón Huamaní DF; Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru.
Polymers (Basel) ; 16(6)2024 Mar 19.
Article in En | MEDLINE | ID: mdl-38543443
ABSTRACT
Tara gum, a natural biopolymer extracted from Caesalpinia spinosa seeds, was investigated in this study. Wall materials were produced using spray drying, forced convection, and vacuum oven drying. In addition, a commercial sample obtained through mechanical methods and direct milling was used as a reference. The gums exhibited low moisture content (8.63% to 12.55%), water activity (0.37 to 0.41), bulk density (0.43 to 0.76 g/mL), and hygroscopicity (10.51% to 11.42%). This allows adequate physical and microbiological stability during storage. Polydisperse particles were obtained, ranging in size from 3.46 µm to 139.60 µm. Fourier transform infrared spectroscopy characterisation confirmed the polysaccharide nature of tara gum, primarily composed of galactomannans. Among the drying methods, spray drying produced the gum with the best physicochemical characteristics, including higher lightness, moderate stability, smaller particle size, and high glass transition temperature (141.69 °C). Regarding rheological properties, it demonstrated a non-Newtonian pseudoplastic behaviour that the power law could accurately describe. The apparent viscosity of the aqueous dispersions of the gum decreased with increasing temperature. In summary, the results establish the potential of tara gum as a wall material applicable in the food and pharmaceutical industries.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Polymers (Basel) Year: 2024 Document type: Article Affiliation country: Peru

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Polymers (Basel) Year: 2024 Document type: Article Affiliation country: Peru