Your browser doesn't support javascript.
loading
Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans.
Li, Ziang; Baidoun, Rani; Brown, Angela C.
Affiliation
  • Li Z; Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
  • Baidoun R; Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
  • Brown AC; Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA. Electronic address: acb313@lehigh.edu.
Colloids Surf B Biointerfaces ; 238: 113870, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38555763
ABSTRACT
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aggregatibacter actinomycetemcomitans / Liposomes / Anti-Bacterial Agents Language: En Journal: Colloids Surf B Biointerfaces Journal subject: QUIMICA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aggregatibacter actinomycetemcomitans / Liposomes / Anti-Bacterial Agents Language: En Journal: Colloids Surf B Biointerfaces Journal subject: QUIMICA Year: 2024 Document type: Article
...