Your browser doesn't support javascript.
loading
Conceptual study of a new instrument for dynamic neutron scattering measurements-The modulated intensity with diffraction analysis spectrometer (MIDAS).
Benedetto, Antonio; Kearley, Gordon J; Faraone, Antonio.
Affiliation
  • Benedetto A; School of Physics, University College Dublin, Dublin D04 N2E5, Ireland.
  • Kearley GJ; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 N2E5, Ireland.
  • Faraone A; Department of Science, University of Roma Tre, 00146 Rome, Italy.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in En | MEDLINE | ID: mdl-38557879
ABSTRACT
Dynamic neutron scattering probes unique nanoscale dynamics via measurement of energy exchanged between a sample and the neutrons. The two spectrometers that investigate processes with characteristic times around a nanosecond are backscattering (BS) and neutron spin-echo (NSE). We present a new method for measuring dynamics using an oscillating cosine-like energy-distribution neutron-package at the sample and measure solely the portion scattered into the elastic line. This portion corresponds to elastically scattered neutrons and, in addition, inelastic components that are scattered with a probability directly proportional to the cosine Fourier-coefficients of the exchanged-energy spectrum. The counts at the detector thus correspond to the van Hove intermediate scattering function. We denote this new method as "Fourier transform neutron scattering" (FTNS), it being broadly analogous to IR and Raman spectroscopies. Here, the realization of such a concept is investigated using an oscillating incident beam produced via a precession method and a secondary spectrometer identical to a BS instrument using crystal analyzers. The instrument is denoted "Modulated Intensity with Diffraction Analysis Spectrometer" (MIDAS). However, simpler approaches, e.g., choppers, may also be used for an FTNS instrument. The theory behind MIDAS is presented, supported by numerical calculations and in silico experiments. Finally, we present a Monte Carlo simulation to compare BS and MIDAS spectrometers. This shows that MIDAS has almost 100 times more incident flux than standard BS, but due to the better signal-to-noise ratio of BS, the final information acquisition rate gain of MIDAS is approximately a factor of 2.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Rev Sci Instrum Year: 2024 Document type: Article Affiliation country: Ireland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Rev Sci Instrum Year: 2024 Document type: Article Affiliation country: Ireland
...