Your browser doesn't support javascript.
loading
Prevented Cell Clusters' Migration Via Microdot Biomaterials for Inhibiting Scar Adhesion.
Zhuang, Yaping; Lin, Feng; Xiang, Lei; Cai, Zhengwei; Wang, Fei; Cui, Wenguo.
Affiliation
  • Zhuang Y; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
  • Lin F; Department of Orthopaedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, 310000, P. R. China.
  • Xiang L; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
  • Cai Z; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
  • Wang F; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
  • Cui W; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
Adv Mater ; 36(24): e2312556, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38563392
ABSTRACT
Cluster-like collective cell migration of fibroblasts is one of the main factors of adhesion in injured tissues. In this research, a microdot biomaterial system is constructed using α-helical polypeptide nanoparticles and anti-inflammatory micelles, which are prepared by ring-opening polymerization of α-amino acids-N-carboxylic anhydrides (NCAs) and lactide, respectively. The microdot biomaterial system slowly releases functionalized polypeptides targeting mitochondria and promoting the influx of extracellular calcium ions under the inflammatory environment, thus inhibiting the expression of N-cadherin mediating cell-cell interaction, and promoting apoptosis of cluster fibroblasts, synergistically inhibiting the migration of fibroblast clusters at the site of tendon injury. Meanwhile, the anti-inflammatory micelles are celecoxib (Cex) solubilized by PEG/polyester, which can improve the inflammatory microenvironment at the injury site for a long time. In vitro, the microdot biomaterial system can effectively inhibit the migration of the cluster fibroblasts by inhibiting the expression of N-cadherin between cell-cell and promoting apoptosis. In vivo, the microdot biomaterial system can promote apoptosis while achieving long-acting anti-inflammation effects, and reduce the expression of vimentin and α-smooth muscle actin (α-SMA) in fibroblasts. Thus, this microdot biomaterial system provides new ideas for the prevention and treatment of tendon adhesion by inhibiting the cluster migration of fibroblasts.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biocompatible Materials / Cell Movement / Fibroblasts Limits: Animals Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biocompatible Materials / Cell Movement / Fibroblasts Limits: Animals Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Country of publication: Germany