Your browser doesn't support javascript.
loading
Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In2Se3 for Electrochemical H2O2 Production.
Liu, Yuepeng; Wang, Pengfei; Xie, Liangbo; Xia, Yuguo; Zhan, Sihui; Hu, Wenping; Li, Yi.
Affiliation
  • Liu Y; Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China.
  • Wang P; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China.
  • Xie L; Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China.
  • Xia Y; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China.
  • Zhan S; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China.
  • Hu W; Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China.
  • Li Y; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China.
Angew Chem Int Ed Engl ; 63(23): e202319470, 2024 Jun 03.
Article in En | MEDLINE | ID: mdl-38566301
ABSTRACT
Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article
...