Your browser doesn't support javascript.
loading
Evaluation of antifungal activity of visible light-activated doped TiO2 nanoparticles.
Lozano-Rosas, Ricardo; Ramos-Garcia, Rubén; Salazar-Morales, Mayra F; Robles-Águila, María Josefina; Spezzia-Mazzocco, Teresita.
Affiliation
  • Lozano-Rosas R; Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico.
  • Ramos-Garcia R; Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico.
  • Salazar-Morales MF; Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico.
  • Robles-Águila MJ; Centro de Investigación en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Edificio 105 C, Boulevard 14 Sur y Av. San Claudio, Col. San Manuel, C. P. 72570, Puebla, Puebla, Mexico.
  • Spezzia-Mazzocco T; Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico. terespezzia@inaoep.mx.
Photochem Photobiol Sci ; 23(5): 823-837, 2024 May.
Article in En | MEDLINE | ID: mdl-38568410
ABSTRACT
Titanium dioxide (TiO2) is a well-known material for its biomedical applications, among which its implementation as a photosensitizer in photodynamic therapy has attracted considerable interest due to its photocatalytic properties, biocompatibility, high chemical stability, and low toxicity. However, the photoactivation of TiO2 requires ultraviolet light, which may lead to cell mutation and consequently cancer. To address these challenges, recent research has focused on the incorporation of metal dopants into the TiO2 lattice to shift the band gap to lower energies by introducing allowed energy states within the band gap, thus ensuring the harnessing of visible light. This study presents the synthesis, characterization, and application of TiO2 nanoparticles (NPs) in their undoped, doped, and co-doped forms for antimicrobial photodynamic therapy (APDT) against Candida albicans. Blue light with a wavelength of 450 nm was used, with doses ranging from 20 to 60 J/cm2 and an NP concentration of 500 µg/ml. It was observed that doping TiO2 with Cu, Fe, Ag ions, and co-doping CuFe into the TiO2 nanostructure enhanced the visible light photoactivity of TiO2 NPs. Experimental studies were done to investigate the effects of different ions doped into the TiO2 crystal lattice on their structural, optical, morphological, and chemical composition for APDT applications. In particular, Ag-doped TiO2 emerged as the best candidate, achieving 90-100% eradication of C. albicans.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Candida albicans / Nanoparticles / Light / Antifungal Agents Language: En Journal: Photochem Photobiol Sci Journal subject: BIOLOGIA / QUIMICA Year: 2024 Document type: Article Affiliation country: Mexico Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Candida albicans / Nanoparticles / Light / Antifungal Agents Language: En Journal: Photochem Photobiol Sci Journal subject: BIOLOGIA / QUIMICA Year: 2024 Document type: Article Affiliation country: Mexico Country of publication: United kingdom