Your browser doesn't support javascript.
loading
Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root.
Huang, Duanyi; Sun, Xiaoxu; Ghani, Muhammad Usman; Li, Baoqin; Yang, Jinchan; Chen, Zhenyu; Kong, Tianle; Xiao, Enzong; Liu, Huaqing; Wang, Qi; Sun, Weimin.
Affiliation
  • Huang D; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; National-Regional Joint Engineering Research Center for Soil Pollution Control
  • Sun X; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Ghani MU; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Li B; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Yang J; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Chen Z; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Kong T; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Xiao E; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
  • Liu H; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Wang Q; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Sun W; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
Environ Pollut ; 349: 123909, 2024 May 15.
Article in En | MEDLINE | ID: mdl-38582183
ABSTRACT
Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidation-Reduction / Soil Microbiology / Soil Pollutants / Biodegradation, Environmental / Arsenites / Plant Roots / Pteris / Comamonadaceae Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidation-Reduction / Soil Microbiology / Soil Pollutants / Biodegradation, Environmental / Arsenites / Plant Roots / Pteris / Comamonadaceae Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: United kingdom