Your browser doesn't support javascript.
loading
Impact of thermal ultrasound on enzyme inactivation and flavor improvement of sea cucumber hydrolysates.
Cheng, Yi-Chao; Jin, Dan-Li; Yu, Wen-Tao; Tan, Bo-Yang; Fu, Jing-Jing; Chen, Yue-Wen.
Affiliation
  • Cheng YC; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
  • Jin DL; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
  • Yu WT; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
  • Tan BY; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
  • Fu JJ; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
  • Chen YW; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China. Electronic address: chenyw@zjgsu.edu.cn.
Food Chem ; 449: 139302, 2024 Aug 15.
Article in En | MEDLINE | ID: mdl-38608610
ABSTRACT
In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sea Cucumbers / Hot Temperature Limits: Animals Language: En Journal: Food Chem Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sea Cucumbers / Hot Temperature Limits: Animals Language: En Journal: Food Chem Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom