Your browser doesn't support javascript.
loading
Circulating tumor cells with metastasis-initiating competence survive fluid shear stress during hematogenous dissemination through CXCR4-PI3K/AKT signaling.
Xin, Ying; Hu, Bing; Li, Keming; Hu, Guanshuo; Zhang, Cunyu; Chen, Xi; Tang, Kai; Du, Pengyu; Tan, Youhua.
Affiliation
  • Xin Y; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Hu B; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Li K; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Hu G; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Zhang C; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Chen X; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Tang K; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Du P; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
  • Tan Y; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China. Electro
Cancer Lett ; 590: 216870, 2024 May 28.
Article in En | MEDLINE | ID: mdl-38614386
ABSTRACT
To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Signal Transduction / Neoplastic Cells, Circulating Limits: Animals / Female / Humans Language: En Journal: Cancer Lett Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Signal Transduction / Neoplastic Cells, Circulating Limits: Animals / Female / Humans Language: En Journal: Cancer Lett Year: 2024 Document type: Article Affiliation country: China