Your browser doesn't support javascript.
loading
Resistance of an intertidal oyster(Saccostrea mordax)to marine heatwaves and the implication for reef building.
Guo, Shuming; Li, Jun; Yang, Xiaogang; Qin, Yanping; Zhao, Yuexin; Wei, Jinkuan; Ma, Haitao; Yu, Ziniu; Zhao, Liqiang; Zhang, Yuehuan.
Affiliation
  • Guo S; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; U
  • Li J; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
  • Yang X; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
  • Qin Y; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
  • Zhao Y; Dalian Ocean University, Dalian 116023, China.
  • Wei J; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; U
  • Ma H; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
  • Yu Z; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
  • Zhao L; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; G
  • Zhang Y; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; S
Sci Total Environ ; 928: 172474, 2024 Jun 10.
Article in En | MEDLINE | ID: mdl-38621527
ABSTRACT
Marine heatwaves (MHWs) have a significant impact on intertidal bivalves and the ecosystems they sustain, causing the destruction of organisms' original habitats. Saccostrea mordax mainly inhabits the intertidal zone around the equator, exhibiting potential tolerance to high temperatures and maybe a species suitable for habitat restoration. However, an understanding about the tolerance mechanism of S. mordax to high temperatures is unclear. It is also unknown the extent to which S. mordax can tolerate repeated heatwaves of increasing intensity and frequency. Here, we simulated the effects of two scenarios of MHWs and measured the physiological and biochemical responses and gene expression spectrum of S. mordax. The predicted responses varied greatly across heatwaves, and no heatwave had a significant impact on the survival of S. mordax. Specifically, there were no statistically significant changes apparent in the standard metabolic rate and the activities of enzymes of the oyster during repeated heatwaves. S. mordax exposed to high-intensity heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance and increasing activity of SOD and expression of HSP70/90. These strategies are presumably at the expense of functions related to immunity and growth, as best exemplified by significant depressions in activities of enzymes (NaK, CaMg, T-ATP, and AKP) and expression levels of genes (Rab, eEF-2, HMGR, Rac1, SGK, Rab8, etc.). The performance status of S. mordax tends to improve by implementing a suite of less energy-costly compensatory mechanisms at various levels of biological organization when re-exposed to heatwaves. The adaptive abilities shown by S. mordax indicate that they can play a crucial role in the restoration of oyster reefs in tropical seas.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ostreidae Limits: Animals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ostreidae Limits: Animals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands