Your browser doesn't support javascript.
loading
Rice rhizospheric effects and mechanism on soil cadmium bioavailability during silicon application.
Yang, Yi; Peng, Hua; Deng, Kai; Shi, Yu; Wei, Wei; Liu, Saihua; Li, Changjun; Zhu, Jian; Dai, Yanjiao; Song, Min; Ji, Xionghui.
Affiliation
  • Yang Y; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Peng H; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Deng K; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Shi Y; Xiangxi Station of Soil and Fertilizer, Jishou 416000, China.
  • Wei W; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Liu S; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Li C; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Zhu J; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Dai Y; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Song M; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
  • Ji X; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil He
Sci Total Environ ; 930: 172702, 2024 Jun 20.
Article in En | MEDLINE | ID: mdl-38657810
ABSTRACT
Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils. Si-induced changes in the rhizosphere also included enhanced dissolved organic carbon and diminished soil Eh, particularly in the Si400 treatment. Meanwhile, the introduction of Si greatly enhanced the Fe2+ and Mn2+ concentrations in the S1 soil, but reduced them in the S2 soil. The rhizosphere effect of Si which enriched Fe2+ and Mn2+ subsequently promoted the formation of Fe and Mn oxides/hydro-oxides near the rice roots. Consequently, the addition of Si significantly reduced the available Cd concentrations in S1, surpassing the reductions in S2 and S3. Moreover, Si-treated rice exhibited increased Fe plaque generation and fixation on soil Cd, resulting in decreased Cd concentrations in rice tissues, accompanied by reduced Cd translocation from roots to shoots and shoots to grains. Structural equation modelling further highlighted that Si is essential in Cd availability in S1 and Fe plaque development, ultimately mitigating Cd accumulation in rice. Si-treated rice also exhibited higher biomass and grain yield than those of control groups. These findings provide valuable insights into Si-based strategies for addressing the Cd contamination of agricultural soils.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oryza / Silicon / Soil / Soil Pollutants / Cadmium / Rhizosphere Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oryza / Silicon / Soil / Soil Pollutants / Cadmium / Rhizosphere Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands